

		PROJECT REFERENCE NO. SHEET NO.				
		310117 2				
<section-header></section-header>	DIVISION O	F HIGHWAYS				
UPPEREDUCTION Description State intermediate intermedintermediate intermedintermediate intermediate intermediate interme	SUBSURFACE	NVESTIGATION				
Control in the c						
	BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT					
Image: constraint of the	IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:					
SOIL LEEDEN AND ABOTH CLASSIFICATION DARMAN 112 AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DARMAN 12 AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DARMAN 12 AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DARMAN 12 AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DARMAN DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DARMAN DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT MEMORE DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT MEMORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT MEMORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT MEMORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT MEMORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM MORE NOT DISC AM	AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:				
State c = 28 moment Provement <						
Note At Az A	GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS OPENALIC MATERIALS					
CLARS C::::::::::::::::::::::::::::::::::::	GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.				
NOME NUME NUME <t< td=""><td>CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-75 A-3 A-6, A-7</td><td></td></t<>	CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-75 A-3 A-6, A-7					
The start of the star		MODERATELY COMPRESSIBLE LL = 31 - 50				
Nome Start	■10 50 MX SILT- MUCK, SULC CLAY PEAT	PERCENTAGE OF MATERIAL				
Nome: Output Outpu Outpu Outpu						
Image: Instrument	PASSING #40	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%				
Bare Bar B<	LL — — — 40 MX 41 MN LITTLE OR LITCLE OR					
Difference Difference <thdifferenc< th=""> Differenc Differenc<</thdifferenc<>	GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOULS	GROUND WATER				
NUTBER 100 VALUE	USUAL TYPES STORE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER					
All of	MATERIALS SAND SAND GRAVEL AND SAND SUILS SUILS					
Privery sector is the proving and the subscription is the sub						
PRIMARY SOLL TYPE COMPACTNESS OF CONSTRUCT PRAVE GF STANDOD CONSTRUCT RANGE GF STANDOD CONSTRUCT <thrange gf="" standod<br="">CONSTRUCT RANGE GF S</thrange>						
PRIMARY SOL TYPE URBAN TABLE UT PROTINITIES UT PROTI						
DBANLAR MATCRIA MATCRI	PRIMARY SOIL TYPE CONSISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES				
DBANLAR MATCRIA MATCRI	GENERALLY LOOSE 4 TO 10	SUPE INDICATOR				
Non-on-on-on-on-on-on-on-on-on-on-on-on-o	MATERIAL MEDIUM DENSE 10 TO 30 N/A					
GERENALLY MATERIAL (CDHESVE) CORPT 2 10 4 HT L CORE 4 20 6 HT L CORE 4 20 6 HT L CORE 4 70 6 HT L CORE Core HT L CORE TST BORING HT L CORE TST BORING HT H T CORE TST BORING HT H H T CORE <thtst b<="" td=""><td>VERY DENSE > 50</td><td></td></thtst>	VERY DENSE > 50					
Statustant (CONSIDER RELEASE (STRE-THR.) RELEASE (STRE-THR.) RELEASE (STRE-THR.) RELEASE (STRE-THR.) Mathematical constraints (STRE-THR.) Mathematiconstraint						
ICOMESIVE VERY STIFF HARD 15 TO 38 > 38 2 TO 4 > 4 Texture or construction Pressor	MATERIAL STIFF 8 TO 15 1 TO 2	SINGUAL INFERRED ROCK LINE O MUNITURING WELL T WITH CORE				
TEXTURE OR GRAIN SIZE RECOMMENDATION SYMBOLS US, STD. SIEVE 4 18 49 68 288 278 OPENING (MP0) 4.76 2.80 6.42 8.63 8.653 UNCLASSIFIED EXCENTION UNCLASSIFIED UNCLASSIFIED EXCENTION EXCENTION <t< td=""><td>(COHESIVE) VERY STIFF 15 TO 30 2 TO 4</td><td></td></t<>	(COHESIVE) VERY STIFF 15 TO 30 2 TO 4					
OPENING OND 4,76 2.08 4,2 2.25 6.075 2.0875	TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS				
BOULDER COBBLE GRAVEL COMPSE FINE SILT CLAY BULLORJ COBJ GRAVEL COMAGE FINE SILT CLAY WACLASSIFIED EXCAVATION - DEMBANAMENTION DEMANAMENTION DEMBANAMENTION DEMANAMENTION		UNDERCOT UNSUITABLE WASTE				
GBLDR.1 COB.1 CGB.2 SAND (CSE, SD.) GBLDR.1 CL.3 CL.3 CL.3 GRAIN MM 385 75 2.0 0.25 0.095 0.005 0.0						
SIZE IN 12 3 NUM NUM<	(BLDR.) (COR.) (CR.) SANU SANU (SL.) (CL.)					
SOIL MOISTURE - CORRELATION OF TERMS CL CLAY MOD MODERATELY C UNIT WEIGHT SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION CPT - COME PENETATION TEST DESCRIPTION OPE - ON PLASTIC OPE - ON PLASTIC OPE - ON PLASTIC S- SPLIE SPOON LL (PLASTIC - SATURATED - (SAT.) USUALLY LIQUID, VET, WET, USUALLY FROM BELOW THE GROUND WATER TABLE OF - ONNAMIC PENETRATION TEST SEMISOLID, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE S- SPLIE SPOON S SIL, SILTY S - SPLIE SPOON S - SPLIE SPOON PLASTIC - WET - (W) SEMISOLID, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE SOLID, AT OR NEAR OPTIMUM MOISTURE TR - TRACUMEC, PERCURES FRAC FRACUMEC, TRACTURES, TRACTORES, FRACURES FRAC FRACUMENTS TC - TRICOME REFUSA W - MOISTURE CONTENT RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING RATIO OM (P) PLASTIC - MOIST - (M) SOLID, AT OR NEAR OPTIMUM MOISTURE SLICHTLY - MOISTURE OPTIMUM MOISTURE - DRY - 100 REDUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE SLICHTLY PLASTIC B- B						
SOLL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION DESCRIPTION CSE COARSE DMT - DIRADICTER TEST SAP SAPROLITIC SATURATED - (SAT.) SATURATED - (SAT.) USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - VERY LOW ATTAIN OPTIMUM MOISTURE SL SHIPLE ABBRING (P) PL PLASTIC LIMIT - SATURATED - (SAT.) USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - VET - (W) CSE COARSE SHIPLE ABBRING CONT DILATOMETER TEST SAP SARD, SANDY SAMLE ABBRING SAP SARD, SANDY SL SLICHTLY SL SLICHTLY SLICHTL		CLCLAY MODMODERATELY γ -UNIT WEIGHT				
Image: Construction of the second of the	SOIL MOISTURE SCALE FIELD MOISTURE CUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC				
LL LIQUID LIMIT (SAT.) FROM BELOW THE GROUND WATER TABLE F - FINE SL - SILT, SILTY ST - SHELBY TUBE PLASTIC - WET - (W) SEMISOLID; REDUIRES DRVING TO ATTAIN OPTIMUM MOISTURE FRACL - FRACTURED, FRA		DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK				
PLASTIC - WET - (W) SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL (PI) RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING (PI) PLASTIC LIMIT - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL (W - MOISTURE CONTENT RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE FRAC FRACTURES TCR - TRICONE REFUSAL (W - MOISTURE CONTENT RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE FRAC FRACTURES TCR - TRICONE REFUSAL (W - WERY RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE OR - CALIFORNIA BEARING SHRINKAGE LIMIT - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE OR - CALIFORNIA BEARING MOVANCING TOOLS; HAMMER TYPE; SUBJECT - DRY - (D) REQUIRES ADDITIONAL WATER CME-55 SCIANTINUOUS FLIGHT AUGER CORE SIZE; HAMMER TYPE; NON PLASTIC 0:5 VERY LOW CME-55 S'HOLLOW AUGER B'HOLLOW AUGER -N <	(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE				
(P1) PL PLASTIC LIMIT - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE EQUIPMENT USED ON SUBJECT PROJECT OM OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE ORL - 45C CLAY BITS AUTOMATIC MANUAL VERY PLASTICITY - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE Gree-45C CLAY BITS CORE SIZE: NON PLASTIC 0-5 VERY LOW SLICHTY INDEX (P) DRY STRENGTH CME-550 HARD FACED FINGER BITS -N -N NON PLASTIC 0-5 VERY LOW SLICHTY VANE SHEAR TEST CASING WADVANCER POST HOLE DIGGER MODERATELY PLASTIC 16-25 MEDIUM HIGH PORTABLE HOIST TRICONE 'STEEL TEETH HAND AUGER HIGHLY PLASTIC 26 OR MORE HIGH PORTABLE HOIST TRICONE 'STEEL TEETH HAND AUGER DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). CORE BIT 'UNGCARB. SOUNDING ROD DESCRIPTIONS MAY INCLUDE COLOR OR C	PLASTIC RANGE SEMISOLID; REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAX				
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE EQUIPMENT USED ON SUBJECT PROJECT SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE ORILL UNITS: ADVANCING TOOLS: HAMMER TYPE: - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE CME-45C CLAY BITS CORE SIZE: - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE G* CONTINUOUS FLIGHT AUGER CORE SIZE: - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE G* CONTINUOUS FLIGHT AUGER CORE SIZE: - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE G* CONTINUOUS FLIGHT AUGER CORE SIZE: - DRY - (D) PLASTICITY DRY STRENGTH CME-550 HARD FACED FINGER BITS -N SLIGHTLY PLASTIC 6-15 SLIGHT CME-550 HARD FACED FINGER BITS -N -N SUBCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). PORTABLE HOIST TRICONE 'STEEL TEETH HAND AUGER DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). Gree BIT 'UNGCARB. SOUNDING ROD						
SL SHRINKAGE LIMIT REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE CME-45C CLAY BITS X AUTOMATIC MANUAL PLASTICITY ATTAIN OPTIMUM MOISTURE CME-45C CLAY BITS X AUTOMATIC MANUAL PLASTICITY DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE CME-45C CLAY BITS X AUTOMATIC MANUAL PLASTICITY DRY STRENOTH NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC CME-550 HARD FACED FINGER BITS N NON PLASTIC 6-15 SLIGHT VANE SHEAR TEST X TUNGCARBIDE INSERTS HAND TOOLS: -N MODERATELY PLASTIC 16-25 MEDIUM PORTABLE HOIST TRICONE 'STEEL TEETH HAND AUGER HAND AUGER DESCRIPTIONS MAY INCLUDE COLOR OR COLOR CONBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). PORTABLE HOIST TRICONE 'TUNGCARB. SOUNDING ROD DESCRIPTIONS MAY INCLUDE COLOR OR COLOR CONBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). CORE BIT VANE SHEAR TEST VANE SHEAR TEST						
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - <td< td=""><td>SL SHRINKAGE LIMIT</td><td></td></td<>	SL SHRINKAGE LIMIT					
PLASTICITY Image: Constant of the second						
NON PLASTIC 0-5 VERV LOW SLIGHTLY PLASTIC 6-15 SLIGHT VANE SHEAR TEST MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH PORTABLE HOIST TRICONE SCASING WALSSIGHT VANE SHEAR TEST TRICONE BESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). PORTABLE HOIST	PLASTICITY					
SLIGHTLY PLASTIC 6-15 SLIGHT VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS: MODERATELY PLASTIC 26 OR MORE HIGH PORTABLE HOIST TRICONE SSEEL TEETH HAND AUGER COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). PORTABLE HOIST TRICONE TUNGCARB. SOUNDING ROD						
HIGHLY PLASTIC 26 OR MORE HIGH PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER COLOR	SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST				
COLOR Image: Color color color combinations (tan, red, yellow-brown, blue-gray). Image: Color color color color combinations (tan, red, yellow-brown, blue-gray). Image: Color color color color color combinations (tan, red, yellow-brown, blue-gray). Image: Color c						
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	COLOR					
MUUIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.						
	MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.					

			PROJECT REFERENCE NO.	SHEET NO.
			310117	
	NORTH	CAROLINA DEPARTME	ENT OF TRANSPORTATION	
		DIVISION OF I		
	GEO1	ECHNICAL ENG	GINEERING UNIT	
	SUBS	URFACE IN	VESTIGATION	Ι
				10
	SOIL AND R	OCK LEGEND, TERMS, S (PAGE 2)	SYMBOLS, AND ABBREVIATION OF 2)	15
	ROCK DES	CRIPTION OULD YIELD SPT REFUSAL IF TESTED. AN INFERRED	TERMS AND DEFINITIONS	
ROCK LINE I SPT REFUSA	INDICATES THE LEVEL AT WHICH NON-COAS	STAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. MPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. ADUIFER - A WATER BEARING FORMATION OR STRATA.	
REPRESENTE	NON-COASTAL PLAIN MATERIAL, THE TRAN D BY A ZONE OF WEATHERED ROCK. RIALS ARE TYPICALLY DIVIDED AS FOLLOW	NSITION BETWEEN SOIL AND ROCK IS OFTEN	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF	
WEATHERED ROCK (WR)	SI // ASI // A	N MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPARTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RI	, SLATE, ETC.
CRYSTALLINE	FINE TO COARSE G	RAIN IGNEOUS AND METAMORPHIC ROCK THAT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO SURFACE.	
ROCK (CR)	GNEISS, GABBRO, SC		CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CA COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY	
ROCK (NCR) COASTAL PL	AIN COASTAL PLAIN SE	ES PHYLLITE, SLATE, SANDSTONE, ETC. DIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN	
SEDIMENTAR (CP)	Y ROCK SPT REFUSAL. ROC SHELL BEDS. ETC. WEATH	C TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.	
FRESH	ROCK FRESH, CRYSTALS BRIGHT, FEW JOINT	S MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INC	
VERY SLIGHT		SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN.	HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORI	
(V SLI.)	OF A CRYSTALLINE NATURE.	HINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF	LINE OF DIP. MEASURED CLOCKWISE FROM NORTH. FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN	
SLIGHT (SLI.)	1 INCH. OPEN JOINTS MAY CONTAIN CLAY.	AND DISCOLORATION EXTENDS INTO ROCK UP TO IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR /STALLINE ROCKS RING UNDER HAMMER BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL	
MODERATE (MOD.)	SIGNIFICANT PORTIONS OF ROCK SHOW DIS		FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION PARENT MATERIAL.	
		HOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DE	
MODERATELY SEVERE	AND DISCOLORED AND A MAJORITY SHOW K	STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL AQLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED	
(MOD. SEV.)	IF TESTED, WOULD YIELD SPT REFUSAL	T'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HA	
SEVERE (SEV.)		STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT N GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED RONG ROCK USUALLY REMAIN.	ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIF	RECTIONS.
VERY	IF TESTED, WOULD YIELD SPT N VALUES >		MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLO USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.	RS. MOTTLING IN SOILS
SEVERE (V SEV.)	BUT MASS IS EFFECTIVELY REDUCED TO S REMAINING. SAPROLITE IS AN EXAMPLE OF	OIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER OF AN INTERVENING IMPERVIOUS STRATUM.	IEVEL BY THE PRESENCE
COMPLETE	ROCK REDUCED TO SOIL. ROCK FABRIC NOT	IN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCR	
	ALSO AN EXAMPLE.	BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE RUN AND EXPRESSED AS A PERCENTAGE.	TOTAL LENGTH OF CORE
VERY HARD		P PICK. BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE ROCK.	OR FABRIC OF THE PARENT
HARD		S PICK. _Y WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFOF RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.	
MODERATELY		UGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	INE BEDUING ON SCHISTOSITY OF THE INTRODUCT ROCKS. <u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM F OR SLIP PLANE.	RICTION ALONG A FAULT
HARD	BY MODERATE BLOWS.	IT'S PICK. HAND SPECIMENS CAN BE DETACHED DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	UN SLIP PENNE. <u>STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT)</u> - NUMBER A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRA	
HARD		EICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.	
SOF T	CAN BE GROVED OR GOUGED READILY BY K	NIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN JRE.	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL F TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALI	
VERY SOFT		WATED READILY WITH POINT OF PICK. PIECES I INCH Y FINGER PRESSURE. CAN BE SCRATCHED READILY BY	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>TOPSOIL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.	THAN 4 INCHES DIVIDED BY
TERM	FRACTURE SPACING	BEDDING	BENCH MARK: BM #2, RR SPIKE SET IN 24" GUM TREE OFFSET - 35.3' LT	<u>-L- STA.15+93,</u>
VERY WID	3 TO 10 FEET	VERY THICKLY BEDDED 4 FEET THICKLY BEDDED 1.5 - 4 FEET		ION: 276.55 FEET
CLOSE VERY CLO	ELY CLOSE 1 TO 3 FEET Ø.16 TO 1 FOOT OSE LESS THAN Ø.16 FEET	THINLY BEDDED 0.16 - 1.5 FEET VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES:	
		THINLY LAMINATED < 0.008 FEET	-	
	NTARY ROCKS, INDURATION IS THE HARDEN	ING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.]	
FRIAB	GENTLE BLOW	BY HAMMER DISINTEGRATES SAMPLE.		
MODER	BREAKS EASILY	SEPARATED FROM SAMPLE WITH STEEL PROBE; WHEN HIT WITH HAMMER.		
INDUR	DIFFICULT TO	FICULT TO SEPARATE WITH STEEL PROBE; BREAK WITH HAMMER.		
EXTR		BLOWS REQUIRED TO BREAK SAMPLE: ACROSS GRAINS.		DATE: 8-15-14

Secretary

September 9, 2016

STATE PROJECT: FEDERAL PROJECT: COUNTY:	17BP.5.R.54 (310117) N/A Durham
DESCRIPTION:	Bridge No.117 on SR 1308 (Cornwallis Rd.) over Mud Creek
SUBJECT:	Geotechnical Report – Inventory

The Geotechnical Engineering Unit has completed a limited subsurface investigation for this project and presents the following inventory. No plans, profiles, or cross-sections will be submitted for this roadway project.

Project Description

The project consists of the replacement of Bridge No. 117 on SR 1308 (Cornwallis Rd.) over Mud Creek. The total length of the roadway portion of the project is 0.2 miles. A literature review of surrounding projects, site visit, and geotechnical investigation was conducted during July of 2016. Bore logs from the bridge subsurface investigation performed in July 2016 were referenced for this roadway subsurface inventory.

Physiography & Geology

The project is located 2.5 miles west of the town of Durham. The project is in the gently rolling terrain of the Durham Triassic Basin. The geology of the project area consists of Triassic age sedimentary rocks, primarily sandstone and the residual soils derived from them. The depositional nature of the Triassic sediments created alternating beds of siltstone and sandstone.

Soil Properties

Soils encountered at the site include Roadway Embankment, alluvial, and Triassic residual soils. The soils consist of granular and cohesive materials.

Roadway Embankment soils consist of tan, brown and orange, loose to medium dense, moist, silty sand (A-2-4) and stiff, sandy clay (A-6). These materials vary in depth from 2.0 to 8.0 feet. Alluvial soils deposited by Mud Creek consist of tan, brown, and gray, very loose to medium dense, moist to wet, sand, coarse and silty sand (A-3, A-1-b, and A-2-4) with some soft to medium stiff, silty clay and sandy silt (A-7 and A-4). These soils are present across the entire project and range in thickness from 4.0 to 10.0 feet. Triassic residual soils consist of gray and brown, stiff, moist, sandy clay (A-6) interbedded with medium dense, silty sand (A-2-4).

Groundwater

Groundwater measurements were taken during periods of average rainfall. Groundwater was found within 12.0 feet of the natural ground surface, and is anticipated to be similar to the water elevation of the Mud Creek.

BORING NO. EB1-A STATION 14+88 OFFSET 13 ft LT ALIGNMENT -L- 0 H COLLAR ELEV. 281.5 ft TOTAL DEPTH 28.7 ft NORTHING 816,233 EASTING 2,008,200 24 H	
BORING NO. EB1-A STATION 14+88 OFFSET 13 ft LT ALIGNMENT 4 0 + COLLAR ELEV. 281.5 ft TOTAL DEPTH 28.7 ft NORTHING 816.233 EASTING 2,008,200 24 H DRILL RICHAMMER EFF./DATE RF00074 CME.55 89% (2209/2015 DRILL METHOD HS.Augers HAMMER TY DRILL Printer, D. G. START DATE 07/19/16 COMP. DATE 07/19/16 SURFACE WATER DEPTH N/A ELEV PRIVE DEIW SPER FOOT ISAMP, MOI G L SOIL AND ROCK DESCRIPT 285 0 25 50 75 100 NO. MOI G ELEV. (ft) SOIL AND ROCK DESCRIPT 286 0 2 50 75 100 NO. MOI G ELEV. (ft) SOIL AND ROCK DESCRIPT 287 275.4 6.1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
COLLAR ELEV. 281.5 ft TOTAL DEPTH 28.7 ft NORTHING 816.233 EASTING 2,008,200 24.1 DRILL RIGHAMMER EFF.DATE RF00074 CME-55 89%,0209/2015 DRILL METHOD H.S. Augers HAMMER TY DRILL REP Inter, D. G. START DATE 07/19/16 COMP. DATE 07/19/16 SURFACE WATER DEPTH N/A ELEV (ft) (ft) 0.5ft 0.5	
DRILL RIGHAMMER EFF.DATE RF00074 CME-55 89% 0209/2015 DRILL METHOD H.A. Augens HAMMER TY DRILLER Pinter, D. G. START DATE 07/19/16 COMP. DATE 07/19/16 SURFACE WATER DEPTH N/A LEV DEPTH BLOW COUNT 0.5ft 0.5ft <td< th=""><th>HR. 1</th></td<>	HR. 1
DRILLER Pinter, D. G. START DATE 07/19/16 COMP. DATE 07/19/16 SURFACE WATER DEPTH N/A LEV DEPTH BLOW COUNT 0 25 50 75 100 NO. MIOI G ELEV.(th) SOIL AND ROCK DESCRIPT 285 0 25 50 75 100 NO. MIOI G ELEV.(th) SOIL AND ROCK DESCRIPT 286 0 25 50 75 100 NO. MIOI G ELEV.(th) SOIL AND ROCK DESCRIPT 288 0 25 50 75 100 NO. MIOI G ELEV.(th) SOIL AND ROCK DESCRIPT 288 0 25 50 75 100 NO. MIOI G ELEV.(th) SOIL AND ROCK DESCRIPT 288 275 275.4 6.1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <th>HR. Fl/</th>	H R . Fl/
LEV (ft) DEPTH (ft) BLOW COUNT 0.5ft BLOWS PER FOOT 0 SAMP 75 SAMP NO. SAMP NO. SOIL AND ROCK DESCRIPT 285	PE Automatic
ELEV ELEV DET IN Osciliante Soil AND ROCK DESCRIPT (ft) (ft) 0.5ft 0.5ft </td <td></td>	
280 281.5 GROUND SURFACE 275 275.4 6.1 3 3 2 275 275.4 6.1 3 4 5 7	TION DEPTI
280 277.9 3.6 3 3 2 275 275.4 6.1 1 3 4 275 275.4 6.1 1 3 4 275 276.4 6.1 1 3 4 270 270.4 11.1 5 8 12 267.9 13.6 3 5 4 265 265.4 16.1 2 3 3 260 262.9 18.6 30 70/0.1 260 257.9 23.6 100/0.2 255 252.9 28.6 60/0.1 255 252.9 28.6 60/0.1 255 252.9 28.6 60/0.1 255 252.9 28.6 60/0.1 252.9 28.6 6	
275 275.4 6.1	
270 270.4 11.1 5 8 12 267.9 13.6 3 5 4 1	
267.9 13.6 3 5 8 12	
265 265.4 16.1 2 3 3 262.9 18.6 30 70/0.1 6 1 1 100/0.6 260 257.9 23.6 100/0.2 100/0.2 100/0.2 100/0.2 255 252.9 28.6 60/0.1 60/0.1 60/0.1 60/0.1 255 60/0.1 60/0.1 60/0.1 60/0.1 60/0.1 252.9 252.9 28.6 60/0.1 60/0.1 60/0.1 60/0.1 100/0.2	
260 257.9 23.6 100/0.2 (TRIASSIC SANDSTONE 255 252.9 28.6	
255 100/0.2 100/0.2 100/0.2 252.9 28.6 100/0.2 100/0.2 60/0.1 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 252.9 28.6 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 100/0.2 10	Ξ)
252.9 28.6 00/0.1 00/0.	
(TRIASSIC SANDSTONE Gring Terminated with Stand Penetration Test Refusal at Elevat ft IN NON-CRYSTALLINE RC (TRIASSIC SANDSTONE (TRIASSIC SANDSTONE (TRIASSIC SANDSTONE)	
	CK =) indard tition 252.8 OCK

NBS	17BP.5	5.R.54			Т	IP 3	10117		COUNT	Y DUR	HAM				GEOLOGIST Pedro, J. L.	
SITE	DESCRI	PTION	BRID	DGE N	0. 117	7 ON	-L- (SR	1308) O	VER MUD	CREEK	(GROUND WTR (1
	NG NO.						ON 14			1		2 ft RT			ALIGNMENT -L-	0 HR. 12
	AR ELE							H 28.5	ft			816,2	15		EASTING 2,008,182	24 HR. FIA
-)2/09/2015	-	1		DRILL M) µс	1	ER TYPE Automatic
					- 1			07/19/	16	COMP		E 07/1		7 11.0	-	
	ER Pir			W CO			DATE		PER FOO		. DAI	SAMP.		1 L T	SURFACE WATER DEPTH N/	A
LEV (ft)	ELEV	DEPTH (ft)	0.5ft			0	2	BLOWS 25	50	ı 75	100	NO.		0	SOIL AND ROCK DES	
(,	(ft)	(,	0.51	0.51	0.51		2			15	100	NO.	/моі	G	ELEV. (ft)	DEPTH
285		-														
	1	-														
	+					μ.								-	281.3 GROUND SURF	
280	+	-				│├┼	· · · ·								TAN AND ORANGE-E	BROWN,
Ļ	277.8	- 3.5	3	3		[SILTY SAND WITH SOME COARS	
75	275.3	-		3	2	🕈	5						M			
275 _	2/0.0	- 0.0	3	4	9	1 -	.•13.						м		-	
-	272.8	- 8.5	3	6	8	·	· j. ·								273.3 ALLUVIAL	
270	270.3	110			ľ	:	9 14						м	-	BROWN, SILTY S	SAND
.70			4	1	2	4 3							≦w7		269.2 268.3 GRAY, SILTY CI	_AY 1
F	267.8	- 13.5	woн	WOH	2	- i·					::		Sat.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TAN-GRAY, SA	
65	+	-								.			Oat.	000	- TAN-GRAY, COARS	
		-				ļ Ē.	\ <u>.</u>								263.3	L SAND
	262.8	- 18.5	40	60/0.2		:	· · · ·				0/0.7 •				WEATHERED RO	DCK
260	1	-													(TRIASSIC SANDS	IONE)
	257.8	- 23.5				•	• • •									
	-257.8 -	- 23.5 -	100/0.2	2		:				. 10	0/0.2					
255	1	-														
	252.8	- 28 5				.	• • •								252.8	2
F	-252.0 =	- 20.0	60/0.0				<u></u>			6	0/0.0 [●]	1		-	Boring Terminated with	Standard
	4	-													- Penetration Test Refusal at ft ON NON-CRYSTALL	INE ROCK
	1	-												Ŀ	(TRIASSIC SANDS	TONE)
	+	-												-		
	-	-												I F		
	1	-														
	1	-												ΙĿ		
	+	-														
	1	-														
	1	-														
	+	-													-	
	1	-												F		
	‡	-														
	+	-														
	Ŧ	-												F		
	‡	-														
	-	-														
	+	-												-		
	ļ	-												F		
	+	-														
	+	-														
	Ŧ	-												F		
	+	-														
	+	-												-		
1	1	-												F		
	+	-														
	+	-														

VBS 17BP.5.F	R.54		TIP	310117 COUNTY	DURHAM		GEOLOGIST Pedro, J. L.	
SITE DESCRIPT	ION BRIE	OGE NO.	117 O	ON -L- (SR 1308) OVER MUD	CREEK			GROUND WTR (ff
BORING NO. E	B2-A		STA	TION 15+66	OFFSET 1	2 ft LT	ALIGNMENT -L-	0 HR. 15.0
OLLAR ELEV.	281.5 ft		тот	AL DEPTH 25.3 ft	NORTHING	816,169	EASTING 2,008,245	24 HR. FIAI
RILL RIG/HAMME	R EFF./DATI	E RFO00	74 CME	E-55 89% 02/09/2015		DRILL METHOD	I.S. Augers HAMM	IER TYPE Automatic
RILLER Pinte			1		COMP. DAT		SURFACE WATER DEPTH N	
		W COUN		BLOWS PER FOOT		SAMP.		
	(ft) 0.5ft				75 100	NO. MOI G	SOIL AND ROCK DES	CRIPTION DEPTH
285								
							-	
							- 281.5 GROUND SURF	ACE
280				· · · · · · · · · · · · · · · · · · ·			ROADWAY EMBAN ORANGE-BROWN, SA	
277.8 + 3	3.7			· · · · · · · · · · · · · · · · · · ·				
	4	7	5	12		M	276.0	
275.3 (6.2	2	3	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 		мЦ	GRAY-BROWN, SIL ⁻ 273.5	TY SAND
272.8 - 8	8.7	2	3			w 🖄	- ALLUVIAL	
270.3 1	12			•5····			GRAY-BROWN, SIL GRAY-BROWN, SAN	
267.8 - 1	2	3	4	•7		W	268.5	1:
207.0 = 1	7	9	6	15		M	BROWN, SAM	1
65 +				····			TRIASSIC RESIL GRAY, SILTY S	AND
262.8 + 1	8.7	07/0.0				1 A A A A A A A A A A A A A A A A A A A	→ 263.5 → WEATHERED R	1
60 +	33	67/0.3		· · · · · · · · · · · · · · · ·	100/0.8		- (TRIASSIC SANDS	TONE)
T				· · · · · · · · · · · · · · · · · · ·				
257.8 - 2 256.2 - 2	23.7			· · · · · · · · · · · · · · · · · ·	100/0.4		256.2	2
256.2 2	60/0.0				60/0.0		Boring Terminated with Penetration Test Refusal at	h Standard

COUNTY DURHAM WBS 17BP.5.R.54 TIP 310117 GEOLOGIST Pedro, J. L. SITE DESCRIPTION BRIDGE NO. 117 ON -L- (SR 1308) OVER MUD CREEK GROUND WTR (ft) **STATION** 15+67 OFFSET ALIGNMENT 0 HR. BORING NO. EB2-B 13 ft RT -L-12.0 COLLAR ELEV. 281.6 ft TOTAL DEPTH 25.2 ft NORTHING 816,154 EASTING 2,008,225 24 HR. FIAD DRILL RIG/HAMMER EFF./DATE RF00074 CME-55 89% 02/09/2015 DRILL METHOD H.S. Augers HAMMER TYPE Automatic COMP. DATE 07/19/16 DRILLER Pinter, D. G. START DATE 07/19/16 SURFACE WATER DEPTH N/A DRIVE **BLOW COUNT BLOWS PER FOOT** SAMP L **FI FV** DEPTH ELEV 0 SOIL AND ROCK DESCRIPTION (ft) (ft) 0.5ft 100 0.5ft 0.5ft 0 50 25 75 NO (ft) мо G ELEV. (ft) DEPTH (ft) 285 GROUND SURFACE 0.0 281.6 ROADWAY EMBANKMENT 280 BROWN, SANDY CLAY • . . WITH SOME WEATHERED ROCK 278.0 3.6 FRAGMENTS 3 4 6 Μ **þ**10 -. -. . . 275.5 + 6.1 - ---. . -----275 3 2 4 Μ 274.4 7. **Q**5 ALLUVIAL 273.0 8.6 GRAY-BROWN TO RED-GRAY. . . 8 4 8 Μ 16 --- -. ---SILTY SAND 270 270.1 11.5 TRIASSIC RESIDUAL GRAY AND BROWN, SANDY CLAY 268.0 13.6 2 3 6 М . -. 265 263.0 18.6 19.1 262.5 25 75/0.3 11 -WEATHERED ROCK 100/0.8 (TRIASSIC SANDSTONE) 260 258.0 23.6 100/0. 100/0.3 -256.4 25.2 256.4 25.2 60/0.0 60/0.0 Boring Terminated with Standard Penetration Test Refusal at Elevation 256.4 ft ON NON-CRYSTALLINE ROCK (TRIASSIC SANDSTONE)